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1 The Quality Factor of a Cavity

The quality factor of a cavity or its Q measures how ideal or lossless a cavity
resonator is. An ideal lossless cavity resonator will sustain free oscillations
forever, while most resonators sustain free oscillations for a finite time due to
losses coming from radiation, or dissipation in the dielectric material filling the
cavity, or resistive loss of the metallic part of the cavity. Because of losses, the
free oscillation in a cavity has electromagnetic field with time dependence as
follows:

E ∝ e−αt cos(ωt+ φ1), H ∝ e−αt cos(ωt+ φ2) (1.1)

The total time-average stored energy, which is proportional to 1
4ε |E|

2
+ 1

4µ |H|
2

is of the form

〈WT 〉 = 〈WE〉+ 〈WH〉 = W0e
−2αt (1.2)

If there is no loss, 〈WT 〉 will remain constant. However, with loss, the average
stored energy will decrease to e−1 of its original value at t = 1

2α . The Q of
a cavity is a measure of the number of free oscillations the field would have
before the energy stored decreases to e−1 of its original value. In a time interval
t = 1

2α , the number of free oscillations in radians is ωt or ω
2α ; hence, the Q is

defined to be

Q =
ω

2α
(1.3)

Furthermore, by energy conservation, the decrease in stored energy per unit
time must be equal to the total power dissipated in the losses of a cavity, in
other words,

〈Pd〉 = −d〈WT 〉
dt

(1.4)

By further assuming that WT has to be of the form in (1.2), then

−d〈WT 〉
dt

= 2αW0e
−2αt = 2α〈Wt〉 (1.5)

Hence, we can write equation (1.3) as

Q =
ω〈WT 〉
〈Pd〉

(1.6)

By further letting ω = 2π/T , we lent further physical interpretation to express
Q as

Q = 2π
〈WT 〉
〈Pd〉T

= 2π
total energy stored

Energy dissipated/cycle
(1.7)
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In a cavity, the energy can dissipate in either the dielectric loss or the wall loss
of the cavity due to the finiteness of the conductivity.

If the cavity is filled with air, then, the loss comes mainly from the metallic
loss or copper-loss from the cavity wall. In this case, the power dissipated on
the wall is given by

〈Pd〉 =
1

2
<e
˛
S

(E×H∗) · n̂ ds =
1

2
<e
˛
S

(n̂×E) ·H∗ dS (1.8)

where S is the surface of the cavity wall. Here, (n̂×E) is the tangential compo-
nent of the electric field which would have been zero if the cavity is ideal PEC.
Also, n̂ is taken to be the outward pointing normal at the surface S. However,
for metallic walls, n̂ × E = HtZm where Zm is the intrinsic impedance for the

metallic conductor, Zm =
√

µ
εm

=
√

µ
−j σω

=
√

ωµ
2σ (1 + j),1 and Ht is the tan-

gential magnetic field. This relation between E and H will ensure that power
is flowing into the metallic surface. Hence,

〈Pd〉 =
1

2
<e
˛
S

√
ωµ

2σ
(1 + j) |Ht|2 dS =

1

2

√
ωµ

2σ

˛
S

|Ht|2 dS (1.9)

By further assuming the the stored electric and magnetic energies of a cavity
are equal to each other at resonance, the stored energy can be obtained by

〈WT 〉 =
1

2
µ

˛
V

|H|2dV (1.10)

Written explicitly, the Q becomes

Q =
√

2ωµσ

¸
V
|H|2 dV¸

S
|Ht|2 dS

=
2

δ

¸
V
|H|2 dV¸

S
|Ht|2 dS

(1.11)

In the above, δ is the skin depth of the metallic wall. Hence, the more energy
stored we can have with respect to the power dissipated, the higher the Q of a
resonating system. The lower the metal loss, or the smaller the skin depth, the
high the Q would be.

1.1 Example: The Q of TM110 Mode

For the TM110 mode, as can be seen from the previous lecture, the only electric
field is E = ẑEz, where

Ez = E0 sin
(πx
a

)
sin
(πy
b

)
(1.12)

1When an electromagnetic wave enters a conductive region with a large β, it can be shown
that the wave is refracted to propagate normally to the surface, and hence, this formula can
be applied.
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The magnetic field can be derived from the electric field using Maxwell’s equa-
tion or Faraday’s law, and

Hx =
jωε

ω2µε

∂

∂y
EZ =

j
(
π
b

)
ωµ

E0 sin
(πx
a

cos
)(πy

b

)
(1.13)

Hy =
−jωε
ω2µε

∂

∂x
EZ = −

j
(
π
a

)
ωµ

E0 cos
(πx
a

)
sin
(πy
b

)
(1.14)

Therefore˛
V

|H|2 dV =

ˆ 0

−d

ˆ b

0

ˆ a

0

dx dy dz
[
|Hx|2 + |Hy|2

]
=
|E0|2

ω2µ2

ˆ 0

−d

ˆ b

0

ˆ a

0

dx dy dz[(π
b

)2
sin2

(πx
a

)
cos2

(πy
b

)
+
(π
a

)2
cos2

(πx
a

)
sin2

(πy
b

)]
=
|E0|2

ω2µ2

π2

4

[
a

b
+
b

a

]
d (1.15)

A cavity has six faces, finding the tangential exponent at each face and
integrate
˛

S

|Ht| dS = 2

ˆ b

0

ˆ a

0

dx dy
[
|Hx|2 + |Hy|2

]

+ 2

ˆ 0

−d

ˆ a

0

dx dz |Hx(y = 0)|2 + 2

ˆ 0

−d

ˆ b

0

dy dz |Hy(x = 0)|2

=
2 |E0|2

ω2µ2

π2ab

4

[
1

a2
+

1

b2

]
+

2
(
π
b

)2
ω2µ2

|E0|2
ad

2
+

2
(
π
a

)2
ω2µ2

|E0|2
bd

2

=
π2 |E0|2

ω2µ2

[
b

2a
+

a

2b
+
ad

b2
+
bd

a2

]
(1.16)

Hence the Q is

Q =
2

δ

(
ad
b + bd

a

)(
b
2a + a

2b + ad
b2 + bd

a2

) (1.17)

The result shows that the larger the cavity, the higher the Q. This is because
the Q is the ratio of the energy stored in a volume to the energy dissipated over
the surface of the cavity.

2 Mode Orthogonality and Matrix Eigenvalue
Problem

It turns out the the modes of a waveguide or a resonator are orthogonal to each
other. This is intimately related to the orthogonality of eigenvectors of a matrix
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operator. Thus, it is best to understand this by the homomorphism between
the electromagnetic mode problem and the matrix eigenvalue problem. Because
of this similarity, electromagnetic modes are also called eigenmodes. Thus it is
prudent that we revisit the matrix eigenvalue problem (BVP).

2.1 Matrix Eigenvalue Problem (EVP)

It is known in matrix theory that if a matrix is hermitian, then its eigenvalues are
all real. Furthermore, their eigenvectors with distinct eigenvalues are orthogonal
to each other. Assume that an eigenvalue and an eigenvector exists for the
hermitian matrix A. Then

A · vi = λivi (2.1)

Dot multiplying the above from the left by v†i where † indicates conjugate
transpose, then the above becomes

v†i ·A · vi = λiv
†
i · vi (2.2)

Since A is hermitian, then the quantity v†i ·A · vi is purely real. Moreover, the

quantity v†i · vi is positive real. So in order for the above to be satisfied, λi has
to be real.

To prove orthogonality of eigenvectors, now, assume that A has two eigen-
vectors with distinct eigenvalues such that

A · vi = λivi (2.3)

A · vj = λjvj (2.4)

Left dot multiply the first equation with v†j and do the same to the second

equation with v†i , one gets

v†j ·A · vi = λiv
†
j · vi (2.5)

v†i ·A · vj = λjv
†
i · vj (2.6)

Taking the conjugate transpose of (2.5) in the above, and since A is hermitian,
their left-hand sides (2.5) and (2.6) are the same. Subtracting the two equations,
we arrive at

0 = (λi − λj)v†j · vi (2.7)

For distinct eigenvalues, λi 6= λj , the only way for the above to be satisfied is
that

v†j · vi = Ciδij (2.8)

Hence, eigenvectors of a hermitian matrix with distinct eigenvalues are orthog-
onal to each other. The eigenvalues are also real.
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2.2 Homomorphism with the Waveguide Mode Problem

We shall next show that the problem for finding the waveguide modes or eigen-
modes is analogous to the matrix eigenvalue problem. The governing equation
for a waveguide mode is BVP involving the reduced wave equation previously
derived, or

∇2
sψi(rs) + β2

isψi(rs) = 0 (2.9)

with the pertinent homogeneous Dirichlet or Neumann boundary condition de-
pending on if TE or TM modes are considered. In the above, the differential
operator ∇2

s is analogous to the matrix operator A, the eigenfunction ψi(rs) is
analogous to the eigenvector vi, and β2

is is analogous to the eigenvalue λi.

2.2.1 Discussion on Functional Space

To think of a function ψ(rs) as a vector, one has to think in the discrete world.
If one needs to display the function ψ(rs), on a computer, one will evaluate the
function ψ(rs) at discrete N locations rls, where l = 1, 2, 3, . . . N . For every rls
or every l, there is a scalar number ψ(rls). These scalar numbers can be stored
in a column vector in a computer indexed by l. The larger N is, the better is
the discrete approximation of ψ(rs). In theory, one needs N to be infinite to
describe this function exactly.

From the above discussion, a function is analogous to a vector and a func-
tional space is analogous to a vector space. However, a functional space is infinite
dimensional. But in order to compute on a computer with finite resource, such
functions are approximated with vectors. Infinite dimensional vector spaces are
replaced with finite dimensional ones to make the problem computable. Such
infinite dimensional functional space is also called Hilbert space.

It is also necessary to define the inner product between two vectors in a
functional space just as inner product between two vectors in an matrix vector
space. The inner product (or dot product) in matrix vector is

vti · vj =

N∑
l=1

vi,lvj,l (2.10)

The analogous inner product between two vectors in function space is 2

〈ψi, ψj〉 =

ˆ
S

drsψi(rs)ψj(rs) (2.11)

where S denotes the cross-sectional area of the waveguide over which the in-
tegration is performed. The left-hand side is the shorthand notation for inner
product in functional space or the infinite dimensional Hilbert space.

2In many math books, the conjugation of the first function ψi is implied, but here, we
follow the electromagnetic convention that the conjugation of ψi is not implied unless explicitly
stated.
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Another requirement for a vector in a functional Hilbert space is that it
contains finite energy or that

Ef =

ˆ
S

drs|ψi(rs)|2 (2.12)

is finite. The above is analogous to that for a matrix vector v as

Em =

N∑
l=1

|vl|2 (2.13)

The square root of the above is often used to denote the “length” or the “metric”
of the vector. Finite energy also implies that the vectors are of finite length.
This length is also called the “norm” of a vector.

2.3 Proof of Orthogonality of Waveguide Modes

Because of the aforementioned discussion, we see the similarity between a func-
tion Hilbert space, and the matrix vector space. In order to use the result of
the matrix EVP, one key step is to prove that the operator ∇2

s is hermitian. In
matrix algebra, a matrix operator is hermitian if

x†i ·A · xj =
(
x†j ·A · xi

)†
=
(
x†j ·A · xi

)∗
(2.14)

The last equality follows because the quantity in the parenthesis is a scalar, and
hence, its conjugate transpose is just its conjugate.

By the same token, a functional operator ∇2 is hermitian if

〈ψ∗i ,∇2
sψj〉 =

ˆ
S

drsψ
∗
i (rs)∇2

sψj(rs) = (〈ψ∗j ,∇2
sψi〉)∗ =

ˆ
S

drsψ
∗
j (rs)∇2

sψi(rs)

(2.15)

Using integration by parts for higher dimensions and with the appropriate
boundary condition for the function ψ(rs), the above equality can be proved.

To this end, one uses the identity that

∇s · [ψ∗i (rs)∇sψj(rs)] = ψ∗i (rs)∇2
sψj(rs) +∇sψ∗i (rs) · ∇sψj(rs) (2.16)

Integrating the above over the cross sectional area S, and invoking Gauss diver-
gence theorem in 2D, one gets that

ˆ
C

dln̂ · (ψ∗i (rs)∇sψj(rs)) =

ˆ
S

drs
(
ψ∗i (rs)∇2

sψj(rs)
)

+

ˆ
S

drs (∇ψ∗i (rs) · ∇sψj(rs)) (2.17)
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where C the the contour bounding S or the waveguide wall. By applying the
boundary condition that ψi(rs) = 0 or that n̂ ·∇sψj(rs) = 0, then the left-hand
side of the above is zero. This will be the case be it TE or TM modes.

0 =

ˆ
S

drs
(
ψ∗i (rs)∇2

sψj(rs)
)

+

ˆ
S

drs (∇ψ∗i (rs) · ∇sψj(rs)) (2.18)

Applying the same treatment to the last term (2.15), we get

0 =

ˆ
S

drs
(
ψj(rs)∇2

sψ
∗
i (rs)

)
+

ˆ
S

drs (∇ψ∗i (rs) · ∇sψj(rs)) (2.19)

The above indicates that

〈ψ∗i ,∇2
sψj〉 = (〈ψ∗j ,∇2

sψi〉)∗ (2.20)

proving that the operator ∇2
s is hermitian. One can then use the above property

to prove the orthogonality of the eigenmodes when they have distinct eigenval-
ues, the same way we have proved the orthogonality of eigenvectors.
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